Hyperbolic Quaternions

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Understanding quaternions

The invention of the calculus of quaternions is a step towards the knowledge of quantities related to space which can only be compared for its importance with the invention of triple coordinates by Descartes. The ideas of this calculus, as distinguished from its operations and symbols, are fitted to be of the greatest use in all parts of science.-Clerk Maxwell, 1869. Quaternions came from Hamil...

متن کامل

Generalized Quaternions

The quaternion group Q8 is one of the two non-abelian groups of size 8 (up to isomorphism). The other one, D4, can be constructed as a semi-direct product: D4 ∼= Aff(Z/(4)) ∼= Z/(4) o (Z/(4))× ∼= Z/(4) o Z/(2), where the elements of Z/(2) act on Z/(4) as the identity and negation. While Q8 is not a semi-direct product, it can be constructed as the quotient group of a semi-direct product. We wil...

متن کامل

Involution Matrices of Real Quaternions

An involution or anti-involution is a self-inverse linear mapping. In this paper, we will present two real quaternion matrices, one corresponding to a real quaternion involution and one corresponding to a real quaternion anti-involution. Moreover, properties and geometrical meanings of these matrices will be given as reflections in R^3.

متن کامل

Grand Antiprism and Quaternions

Vertices of the 4-dimensional semi-regular polytope, the grand antiprism and its symmetry group of order 400 are represented in terms of quaternions with unit norm. It follows from the icosian representation of the E8 root system which decomposes into two copies of the root system of H4. The symmetry of the grand antiprism is a maximal subgroup of the Coxeter groupW (H4). It is the groupAut(H2⊕...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the Royal Society of Edinburgh

سال: 1902

ISSN: 0370-1646

DOI: 10.1017/s0370164600010385